New to site?


Lost password? (X)

Already have an account?



Archive by Category "INDUSTRY NEWS"

HomeArchive by Category "INDUSTRY NEWS"

Nature, Published online: 10 February 2020; doi:10.1038/d41586-020-00339-3
Immune cells whose genomes have been altered with CRISPR are well-tolerated by three people with cancer.

Nature, Published online: 08 February 2020; doi:10.1038/s41586-020-2017-2
Publisher Correction: Processive extrusion of polypeptide loops by a Hsp100 disaggregase

Nature, Published online: 08 February 2020; doi:10.1038/d41586-020-00365-1
European Space Agency’s Solar Orbiter will contribute to a ‘golden age’ of solar science.

Nature, Published online: 07 February 2020; doi:10.1038/d41586-020-00357-1
Organic chemist whose rules aided the synthesis of natural products.

Polyethylene glycols (PEGs) can improve the diffusivity of nanoparticles (NPs) in biological hydrogels, while extended PEG chains severely impede cellular uptake of NPs. Inspired by invasive germs with flagellum-driven mucus-penetrating and fimbriae-mediated epithelium-adhering abilities, we developed germ-mimetic NPs (GMNPs) to overcome multiple barriers in mucosal and tumor tissues. In vitro studies and computational simulations revealed that the tip-specific extended PEG chains on GMNP functioned similarly to flagella, facilitating GMNP diffusion (up to 83.0-fold faster than their counterparts). Meanwhile, the packed PEG chains on the bodies of GMNP mediated strong adhesive interactions with cells similarly to the fimbriae, preserving cellular uptake efficiency. The in vivo results proved the superior tumor permeability and improved oral bioavailability provided by the GMNP (21.9-fold over administration of crystalline drugs). These findings offer useful guidelines for the rational ..

A nearly free electron metal and a Mott insulating state can be thought of as opposite ends of the spectrum of possibilities for the motion of electrons in a solid. Understanding their interaction lies at the heart of the correlated electron problem. In the magnetic oxide metal PdCrO2, nearly free and Mott-localized electrons exist in alternating layers, forming natural heterostructures. Using angle-resolved photoemission spectroscopy, quantitatively supported by a strong coupling analysis, we show that the coupling between these layers leads to an “intertwined” excitation that is a convolution of the charge spectrum of the metallic layer and the spin susceptibility of the Mott layer. Our findings establish PdCrO2 as a model system in which to probe Kondo lattice physics and also open new routes to use the a priori nonmagnetic probe of photoemission to gain insights into the spin susceptibility of correlated electron materials.

Duchenne muscular dystrophy (DMD) is a devastating disease caused by mutations in dystrophin that compromise sarcolemma integrity. Currently, there is no treatment for DMD. Mutations in transient receptor potential mucolipin 1 (ML1), a lysosomal Ca2+ channel required for lysosomal exocytosis, produce a DMD-like phenotype. Here, we show that transgenic overexpression or pharmacological activation of ML1 in vivo facilitates sarcolemma repair and alleviates the dystrophic phenotypes in both skeletal and cardiac muscles of mdx mice (a mouse model of DMD). Hallmark dystrophic features of DMD, including myofiber necrosis, central nucleation, fibrosis, elevated serum creatine kinase levels, reduced muscle force, impaired motor ability, and dilated cardiomyopathies, were all ameliorated by increasing ML1 activity. ML1-dependent activation of transcription factor EB (TFEB) corrects lysosomal insufficiency to diminish muscle damage. Hence, targeting lysosomal Ca2+ channels may represent a promis..

Secondary drug resistance stems from dynamic clonal evolution during the development of a prior primary resistance. This collateral type of resistance is often a characteristic of cancer recurrence. Yet, mechanisms that drive this collateral resistance and their drug-specific trajectories are still poorly understood. Using resistance selection and small-scale pharmacological screens, we find that cancer cells with primary acquired resistance to the microtubule-stabilizing drug paclitaxel often develop tolerance to epidermal growth factor receptor–tyrosine kinase inhibitors (EGFR-TKIs), leading to formation of more stable resistant cell populations. We show that paclitaxel-resistant cancer cells follow distinct selection paths under EGFR-TKIs by enriching the stemness program, developing a highly glycolytic adaptive stress response, and rewiring an apoptosis control pathway. Collectively, our work demonstrates the alterations in cellular state stemming from paclitaxel failure that resul..

Liver metastases often progress from primary cancers including uveal melanoma (UM), breast, and colon cancer. Molecular biomarker imaging is a new non-invasive approach for detecting early stage tumors. Here, we report the elevated expression of chemokine receptor 4 (CXCR4) in liver metastases in UM patients and metastatic UM mouse models, and development of a CXCR4-targeted MRI contrast agent, ProCA32.CXCR4, for sensitive MRI detection of UM liver metastases. ProCA32.CXCR4 exhibits high relaxivities (r1 = 30.9 mM–1 s–1, r2 = 43.2 mM–1 s–1, 1.5 T; r1 = 23.5 mM–1 s–1, r2 = 98.6 mM–1 s–1, 7.0 T), strong CXCR4 binding (Kd = 1.10 ± 0.18 μM), CXCR4 molecular imaging capability in metastatic and intrahepatic xenotransplantation UM mouse models. ProCA32.CXCR4 enables detecting UM liver metastases as small as 0.1 mm3. Further development of the CXCR4-targeted imaging agent should have strong translation potential for early detection, surveillance, and treatment stratification of liver metastas..

The oxygen redox (OR) activity is conventionally considered detrimental to the stability and kinetics of batteries. However, OR reactions are often confused by irreversible oxygen oxidation. Here, based on high-efficiency mapping of resonant inelastic x-ray scattering of both the transition metal and oxygen, we distinguish the lattice OR in Na0.6[Li0.2Mn0.8]O2 and compare it with Na2/3[Mg1/3Mn2/3]O2. Both systems display strong lattice OR activities but with distinct electrochemical stability. The comparison shows that the substantial capacity drop in Na0.6[Li0.2Mn0.8]O2 stems from non-lattice oxygen oxidations, and its voltage decay from an increasing Mn redox contribution upon cycling, contrasting those in Na2/3[Mg1/3Mn2/3]O2. We conclude that lattice OR is not the ringleader of the stability issue. Instead, irreversible oxygen oxidation and the changing cationic reactions lead to the capacity and voltage fade. We argue that lattice OR and other oxygen activities should/could be stud..