New to site?


Login

Lost password? (X)

Already have an account?


Signup

(X)
Farooq

Archive by Category "INDUSTRY NEWS" (Page 2)

HomeArchive by Category "INDUSTRY NEWS" (Page 2)

Quantum memory capable of storage and retrieval of flying photons on demand is crucial for developing quantum information technologies. However, the devices needed for long-distance links are different from those envisioned for local processing. We present the first hybrid quantum memory-enabled network by demonstrating the interconnection and simultaneous operation of two types of quantum memory: an atomic ensemble-based memory and an all-optical Loop memory. Interfacing the quantum memories at room temperature, we observe a well-preserved quantum correlation and a violation of Cauchy-Schwarz inequality. Furthermore, we demonstrate the creation and storage of a fully-operable heralded photon chain state that can achieve memory-built-in combining, swapping, splitting, tuning, and chopping single photons in a chain temporally. Such a quantum network allows atomic excitations to be generated, stored, and converted to broadband photons, which are then transferred to the next node, stored,..

The development of nanofibers is expected to foster the creation of outstanding lightweight nanocomposites and flexible and transparent composites for applications such as optoelectronics. However, the reduced length of existing nanofibers and nanotubes limits mechanical strengthening and effective manufacturing. Here, we present an innovative method that produces glass nanofibers with lengths that are, effectively, unlimited by the process. The method uses a combination of a high-power laser with a supersonic gas jet. We describe the experimental setup and the physical processes involved, and, with the aid of a mathematical simulation, identify and discuss the key parameters which determine its distinctive features and feasibility. This method enabled the production of virtually unlimited long, solid, and nonporous glass nanofibers that display outstanding flexibility and could be separately arranged and weaved.

Monolayer-protected atomically precise silver clusters display low photoluminescence (PL) quantum yield (QY) and susceptibility under ambient conditions, and their chiroptical activities also remain underdeveloped. Here, we report enantiomers of an octahedral Ag6 cluster prepared via one-step synthesis using designed chiral ligands at ambient temperature. These clusters exhibit a highest PLQY (300 K) >95.0% and retain their structural integrity and emission up to 150°C in air. Atomically precise structural determination combined with photophysical and computational analysis revealed that thermally activated delayed fluorescence, observed in silver cluster systems, is responsible for the high PLQY, which combines chirality in excited states to generate strong circularly polarized luminescence. These unprecedented findings open up horizons of investigation of monolayer-protected silver clusters for future luminescence applications.

The direct imaging of current density vector distributions in thin films has remained a daring challenge. Here, we report that an inhomogeneous current distribution can be mapped directly by the trajectories of magnetic half-skyrmions driven by an electrical current in Pt/Co/Ta trilayer, using polar magneto-optical Kerr microscopy. The half-skyrmion carries a topological charge of 0.5 due to the presence of Dzyaloshinskii-Moriya interaction, which leads to the half-skyrmion Hall effect. The Hall angle of half-skyrmions is independent of current density and can be reduced to as small as 4° by tuning the thickness of the Co layer. The Hall angle is so small that the elongation path of half-skyrmion approximately delineates the invisible current flow as demonstrated in both a continuous film and a curved track. Our work provides a practical technique to directly map inhomogeneous current distribution even in complex geometries for both fundamental research and industrial applications.

Light-matter interactions in semiconductors are uniformly treated within the electric dipole approximation; multipolar interactions are considered “forbidden.” We experimentally demonstrate that this approximation inadequately describes light emission in two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs), solution processable semiconductors with promising optoelectronic properties. By exploiting the highly oriented crystal structure, we use energy-momentum spectroscopies to demonstrate that an exciton-like sideband in 2D HOIPs exhibits a multipolar radiation pattern with highly directed emission. Electromagnetic and quantum-mechanical analyses indicate that this emission originates from an out-of-plane magnetic dipole transition arising from the 2D character of electronic states. Symmetry arguments and temperature-dependent measurements suggest a dynamic symmetry-breaking mechanism that is active over a broad temperature range. These results challenge the paradigm of ele..

A newly identified microbial rhodopsin, NM-R3, from the marine flavobacterium Nonlabens marinus, was recently shown to drive chloride ion uptake, extending our understanding of the diversity of mechanisms for biological energy conversion. To clarify the mechanism underlying its function, we characterized the crystal structures of NM-R3 in both the dark state and early intermediate photoexcited states produced by laser pulses of different intensities and temperatures. The displacement of chloride ions at five different locations in the model reflected the detailed anion-conduction pathway, and the activity-related key residues—Cys105, Ser60, Gln224, and Phe90—were identified by mutation assays and spectroscopy. Comparisons with other proteins, including a closely related outward sodium ion pump, revealed key motifs and provided structural insights into light-driven ion transport across membranes by the NQ subfamily of rhodopsins. Unexpectedly, the response of the retinal in NM-R3 to pho..

Retinal organoids (ROs) derived from human induced pluripotent stem cells (hiPSCs) provide potential opportunities for studying human retinal development and disorders; however, to what extent ROs recapitulate the epigenetic features of human retinal development is unknown. In this study, we systematically profiled chromatin accessibility and transcriptional dynamics over long-term human retinal and RO development. Our results showed that ROs recapitulated the human retinogenesis to a great extent, but divergent chromatin features were also discovered. We further reconstructed the transcriptional regulatory network governing human and RO retinogenesis in vivo. Notably, NFIB and THRA were identified as regulators in human retinal development. The chromatin modifications between developing human and mouse retina were also cross-analyzed. Notably, we revealed an enriched bivalent modification of H3K4me3 and H3K27me3 in human but not in murine retinogenesis, suggesting a more dedicated epi..

The contrast of an image can be degraded by the presence of background light and sensor noise. To overcome this degradation, quantum illumination protocols have been theorized that exploit the spatial correlations between photon pairs. Here, we demonstrate the first full-field imaging system using quantum illumination by an enhanced detection protocol. With our current technology, we achieve a rejection of background and stray light of up to 5.8 and also report an image contrast improvement up to a factor of 11, which is resilient to both environmental noise and transmission losses. The quantum illumination protocol differs from usual quantum schemes in that the advantage is maintained even in the presence of noise and loss. Our approach may enable laboratory-based quantum imaging to be applied to real-world applications where the suppression of background light and noise is important, such as imaging under low photon flux and quantum LIDAR.

The first sequenced genome was that of the 3569-nucleotide single-stranded RNA (ssRNA) bacteriophage MS2. Despite the recent accumulation of vast amounts of DNA and RNA sequence data, only 12 representative ssRNA phage genome sequences are available from the NCBI Genome database (June 2019). The difficulty in detecting RNA phages in metagenomic datasets raises questions as to their abundance, taxonomic structure, and ecological importance. In this study, we iteratively applied profile hidden Markov models to detect conserved ssRNA phage proteins in 82 publicly available metatranscriptomic datasets generated from activated sludge and aquatic environments. We identified 15,611 nonredundant ssRNA phage sequences, including 1015 near-complete genomes. This expansion in the number of known sequences enabled us to complete a phylogenetic assessment of both sequences identified in this study and known ssRNA phage genomes. Our expansion of these viruses from two environments suggests that they..

Homologous recombination is exquisitely activated only during specific cell phases. In the G1 phase, homologous recombination activity is completely suppressed. According to previous reports, the activation of homologous recombination during specific cell phases depends on the kinase activity of cyclin-dependent kinase 1 (CDK1). However, the precise regulatory mechanism and target substrates of CDK1 for this regulation have not been completely determined. Here, we report that the budding yeast CDK1, Cdc28, phosphorylates the major homologous recombination regulators Rad51 and Rad52. This phosphorylation occurs in the G2/M phase by Cdc28 in combination with G2/M phase cyclins. Nonphosphorylatable mutations in Rad51 and Rad52 impair the DNA binding affinity of Rad51 and the affinity between Rad52 rings that leads to their interaction. Collectively, our data provide detailed insights into the regulatory mechanism of cell cycle–dependent homologous recombination activation in eukaryotic ce..